Classification¶
-
class
rulekit.classification.RuleClassifier(minsupp_new: int = 5, induction_measure: rulekit.params.Measures = <Measures.Correlation: 'Correlation'>, pruning_measure: Union[rulekit.params.Measures, str] = <Measures.Correlation: 'Correlation'>, voting_measure: rulekit.params.Measures = <Measures.Correlation: 'Correlation'>, max_growing: float = 0.0, enable_pruning: bool = True, ignore_missing: bool = False, max_uncovered_fraction: float = 0.0, select_best_candidate: bool = False, min_rule_covered: Optional[int] = None)¶ Classification model.
- Parameters:
minsupp_new (int = 5) – positive integer representing minimum number of previously uncovered examples to be covered by a new rule (positive examples for classification problems); default: 5
induction_measure (
rulekit.params.Measures=rulekit.params. Measures.Correlation) – measure used during induction; default measure is correlationpruning_measure (Union[
rulekit.params.Measures, str] =rulekit.params.Measures.Correlation) – measure used during pruning. Could be user defined (string), for example2 * p / n; default measure is correlationvoting_measure (
rulekit.params.Measures=rulekit.params.Measures.Correlation) – measure used during voting; default measure is correlationmax_growing (int = 0.0) – non-negative integer representing maximum number of conditions which can be added to the rule in the growing phase (use this parameter for large datasets if execution time is prohibitive); 0 indicates no limit; default: 0,
enable_pruning (bool = True) – enable or disable pruning, default is True.
ignore_missing (bool = False) – boolean telling whether missing values should be ignored (by default, a missing value of given attribute is always cconsidered as not fulfilling the condition build upon that attribute); default: False.
max_uncovered_fraction (float = 0.0) – Floating-point number from [0,1] interval representing maximum fraction of examples that may remain uncovered by the rule set, default: 0.0.
select_best_candidate (bool = False) – Flag determining if best candidate should be selected from growing phase; default: False.
min_rule_covered (int = None) –
alias to minsupp_new. Parameter is deprecated and will be removed in the next major version, use minsupp_new
Deprecated since version 1.7.0: Use parameter minsupp_new instead.
-
fit(values: Union[numpy.ndarray, pandas.core.frame.DataFrame, list], labels: Union[numpy.ndarray, pandas.core.frame.DataFrame, list]) → rulekit.classification.RuleClassifier¶ Train model on given dataset.
- Parameters:
values (
rulekit.operator.Data) – attributeslabels (
rulekit.operator.Data) – labels
- Returns:
self
- Return type:
-
get_coverage_matrix(values: Union[numpy.ndarray, pandas.core.frame.DataFrame, list]) → numpy.ndarray¶ Calculates coverage matrix for ruleset.
- Parameters:
values (
rulekit.operator.Data) – dataset- Returns:
coverage_matrix – Each row of the matrix represent single example from dataset and every column represent on rule from rule set. Value 1 in the matrix cell means that rule covered certain example, value 0 means that it doesn’t.
- Return type:
np.ndarray
-
get_params() → dict¶ - Returns:
hyperparameters – Dictionary containing model hyperparameters.
- Return type:
np.ndarray
-
predict(values: Union[numpy.ndarray, pandas.core.frame.DataFrame, list], return_metrics: bool = False) → Union[numpy.ndarray, tuple]¶ Perform prediction and returns predicted labels.
- Parameters:
values (
rulekit.operator.Data) – attributesreturn_metrics (bool = False) – Optional flag. If set to True method will calculate some additional model metrics. Method will then return tuple instead of just predicted labels.
- Returns:
result – If return_metrics flag wasn’t set it will return just prediction, otherwise a tuple will be returned with first element being prediction and second one being metrics.
- Return type:
Union[np.ndarray, Tuple[np.ndarray, Dict[str, float]]]
-
predict_proba(values: Union[numpy.ndarray, pandas.core.frame.DataFrame, list], return_metrics: bool = False) → Union[numpy.ndarray, tuple]¶ Perform prediction and returns class probabilities for each example.
- Parameters:
values (
rulekit.operator.Data) – attributesreturn_metrics (bool = False) – Optional flag. If set to True method will calculate some additional model metrics. Method will then return tuple instead of just probabilities.
- Returns:
result – If return_metrics flag wasn’t set it will return just probabilities matrix, otherwise a tuple will be returned with first element being prediction and second one being metrics.
- Return type:
Union[np.ndarray, Tuple[np.ndarray, Dict[str, float]]]
-
score(values: Union[numpy.ndarray, pandas.core.frame.DataFrame, list], labels: Union[numpy.ndarray, pandas.core.frame.DataFrame, list]) → float¶ Return the accuracy on the given test data and labels.
- Parameters:
values (
rulekit.operator.Data) – attributeslabels (
rulekit.operator.Data) – true labels
- Returns:
score – Accuracy of self.predict(values) wrt. labels.
- Return type:
float
-
set_params(**kwargs) → object¶ Set models hyperparameters. Parameters are the same as in constructor.
-
class
rulekit.classification.ExpertRuleClassifier(minsupp_new: int = 5, induction_measure: rulekit.params.Measures = <Measures.Correlation: 'Correlation'>, pruning_measure: Union[rulekit.params.Measures, str] = <Measures.Correlation: 'Correlation'>, voting_measure: rulekit.params.Measures = <Measures.Correlation: 'Correlation'>, max_growing: float = 0.0, enable_pruning: bool = True, ignore_missing: bool = False, max_uncovered_fraction: float = 0.0, select_best_candidate: bool = False, extend_using_preferred: Optional[bool] = None, extend_using_automatic: Optional[bool] = None, induce_using_preferred: Optional[bool] = None, induce_using_automatic: Optional[bool] = None, consider_other_classes: Optional[bool] = None, preferred_conditions_per_rule: Optional[int] = None, preferred_attributes_per_rule: Optional[int] = None, min_rule_covered: Optional[int] = None)¶ Classification model using expert knowledge.
- Parameters:
minsupp_new (int = 5) – positive integer representing minimum number of previously uncovered examples to be covered by a new rule (positive examples for classification problems); default: 5
induction_measure (
rulekit.params.Measures=rulekit.params.Measures.Correlation) – measure used during induction; default measure is correlationpruning_measure (Union[
rulekit.params.Measures, str] =rulekit.params.Measures.Correlation) – measure used during pruning. Could be user defined (string), for example2 * p / n; default measure is correlationvoting_measure (
rulekit.params.Measures=rulekit.params.Measures.Correlation) – measure used during voting; default measure is correlationmax_growing (int = 0.0) – non-negative integer representing maximum number of conditions which can be added to the rule in the growing phase (use this parameter for large datasets if execution time is prohibitive); 0 indicates no limit; default: 0,
enable_pruning (bool = True) – enable or disable pruning, default is True.
ignore_missing (bool = False) – boolean telling whether missing values should be ignored (by default, a missing value of given attribute is always considered as not fulfilling the condition build upon that attribute); default: False.
max_uncovered_fraction (float = 0.0) – Floating-point number from [0,1] interval representing maximum fraction of examples that may remain uncovered by the rule set, default: 0.0.
select_best_candidate (bool = False) – Flag determining if best candidate should be selected from growing phase; default: False.
extend_using_preferred (bool = False) – boolean indicating whether initial rules should be extended with a use of preferred conditions and attributes; default is False
extend_using_automatic (bool = False) – boolean indicating whether initial rules should be extended with a use of automatic conditions and attributes; default is False
induce_using_preferred (bool = False) – boolean indicating whether new rules should be induced with a use of preferred conditions and attributes; default is False
induce_using_automatic (bool = False) – boolean indicating whether new rules should be induced with a use of automatic conditions and attributes; default is False
consider_other_classes (bool = False) –
- boolean indicating whether automatic induction should be performed for classes for
which no user’s knowledge has been defined (classification only); default is False.
preferred_conditions_per_rule (int = None) – maximum number of preferred conditions per rule; default: unlimited,
preferred_attributes_per_rule (int = None) – maximum number of preferred attributes per rule; default: unlimited.
min_rule_covered (int = None) –
alias to minsupp_new. Parameter is deprecated and will be removed in the next major version, use minsupp_new
Deprecated since version 1.7.0: Use parameter minsupp_new instead.
-
fit(values: Union[numpy.ndarray, pandas.core.frame.DataFrame, list], labels: Union[numpy.ndarray, pandas.core.frame.DataFrame, list], expert_rules: Optional[list] = None, expert_preferred_conditions: Optional[list] = None, expert_forbidden_conditions: Optional[list] = None) → rulekit.classification.ExpertRuleClassifier¶ Train model on given dataset.
- Parameters:
values (
rulekit.operator.Data) – attributeslabels (
rulekit.operator.Data) – labelsexpert_rules (List[Union[str, Tuple[str, str]]]) – set of initial rules, either passed as a list of strings representing rules or as list of tuples where first element is name of the rule and second one is rule string.
expert_preferred_conditions (List[Union[str, Tuple[str, str]]]) – multiset of preferred conditions (used also for specifying preferred attributes by using special value Any). Either passed as a list of strings representing rules or as list of tuples where first element is name of the rule and second one is rule string.
expert_forbidden_conditions (List[Union[str, Tuple[str, str]]]) – set of forbidden conditions (used also for specifying forbidden attributes by using special valye Any). Either passed as a list of strings representing rules or as list of tuples where first element is name of the rule and second one is rule string.
- Returns:
self
- Return type:
-
get_coverage_matrix(values: Union[numpy.ndarray, pandas.core.frame.DataFrame, list]) → numpy.ndarray¶ Calculates coverage matrix for ruleset.
- Parameters:
values (
rulekit.operator.Data) – dataset- Returns:
coverage_matrix – Each row of the matrix represent single example from dataset and every column represent on rule from rule set. Value 1 in the matrix cell means that rule covered certain example, value 0 means that it doesn’t.
- Return type:
np.ndarray
-
get_params() → dict¶ - Returns:
hyperparameters – Dictionary containing model hyperparameters.
- Return type:
np.ndarray
-
predict(values: Union[numpy.ndarray, pandas.core.frame.DataFrame, list], return_metrics: bool = False) → Union[numpy.ndarray, tuple]¶ Perform prediction and returns predicted labels.
- Parameters:
values (
rulekit.operator.Data) – attributesreturn_metrics (bool = False) – Optional flag. If set to True method will calculate some additional model metrics. Method will then return tuple instead of just predicted labels.
- Returns:
result – If return_metrics flag wasn’t set it will return just prediction, otherwise a tuple will be returned with first element being prediction and second one being metrics.
- Return type:
Union[np.ndarray, Tuple[np.ndarray, Dict[str, float]]]
-
predict_proba(values: Union[numpy.ndarray, pandas.core.frame.DataFrame, list], return_metrics: bool = False) → Union[numpy.ndarray, tuple]¶ Perform prediction and returns class probabilities for each example.
- Parameters:
values (
rulekit.operator.Data) – attributesreturn_metrics (bool = False) – Optional flag. If set to True method will calculate some additional model metrics. Method will then return tuple instead of just probabilities.
- Returns:
result – If return_metrics flag wasn’t set it will return just probabilities matrix, otherwise a tuple will be returned with first element being prediction and second one being metrics.
- Return type:
Union[np.ndarray, Tuple[np.ndarray, Dict[str, float]]]
-
score(values: Union[numpy.ndarray, pandas.core.frame.DataFrame, list], labels: Union[numpy.ndarray, pandas.core.frame.DataFrame, list]) → float¶ Return the accuracy on the given test data and labels.
- Parameters:
values (
rulekit.operator.Data) – attributeslabels (
rulekit.operator.Data) – true labels
- Returns:
score – Accuracy of self.predict(values) wrt. labels.
- Return type:
float