Class SurvivalRuleSet
java.lang.Object
adaa.analytics.rules.logic.representation.ruleset.PredictionModel
adaa.analytics.rules.logic.representation.ruleset.RuleSetBase
adaa.analytics.rules.logic.representation.ruleset.SurvivalRuleSet
- All Implemented Interfaces:
- Serializable
Class representing a set of survival rules.
- See Also:
- 
Nested Class SummaryNested classes/interfaces inherited from class adaa.analytics.rules.logic.representation.ruleset.RuleSetBaseRuleSetBase.Significance
- 
Field SummaryFieldsModifier and TypeFieldDescriptionstatic final StringAnnotation representing survival function estimator of the training set (in a text form).static final StringAnnotation storing reveresed survival estimator of the training set (in a text form).static final StringName of the prediction attribute representing survival function estimator (in a text form).protected KaplanMeierEstimatorTraining set estimator.Fields inherited from class adaa.analytics.rules.logic.representation.ruleset.RuleSetBaseANNOTATION_TEST_REPORT, attributes, growingTime, isVoting, knowledge, params, pruningTime, rules, totalTime
- 
Constructor SummaryConstructorsConstructorDescriptionSurvivalRuleSet(IExampleSet exampleSet, boolean isVoting, InductionParameters params, Knowledge knowledge) Invokes base class constructor and calculates survival function estimator for the training set.
- 
Method SummaryModifier and TypeMethodDescriptionapply(IExampleSet exampleSet) Applies the rule model on a given set (estimates survival functions for all examples).protected IAttributecreatePredictionAttributes(IExampleSet exampleSet, IAttribute label) Computes prediction attributes (survival estimator) for a given set.GetstrainingEstimator}.doubleEstimates survival function for a given example and stores in a text form in ATTRIBUTE_ESTIMATOR attribute.toString()Generates text representation of the survival rule set.Methods inherited from class adaa.analytics.rules.logic.representation.ruleset.RuleSetBaseaddRule, calculateAvgRuleCoverage, calculateAvgRulePrecision, calculateAvgRuleQuality, calculateConditionsCount, calculateInducedCondtionsCount, calculateSignificance, calculateSignificanceFDR, calculateSignificanceFWER, getGrowingTime, getIsVoting, getParams, getPruningTime, getRules, getTotalTime, performPrediction, setGrowingTime, setIsVoting, setPruningTime, setTotalTime, toTableMethods inherited from class adaa.analytics.rules.logic.representation.ruleset.PredictionModelcheckCompatibility, getLabel, getTrainingHeader, supportsConfidences
- 
Field Details- 
ATTRIBUTE_ESTIMATORName of the prediction attribute representing survival function estimator (in a text form).- See Also:
 
- 
ANNOTATION_TRAINING_ESTIMATORAnnotation representing survival function estimator of the training set (in a text form).- See Also:
 
- 
ANNOTATION_TRAINING_ESTIMATOR_REVAnnotation storing reveresed survival estimator of the training set (in a text form).- See Also:
 
- 
trainingEstimatorTraining set estimator.
 
- 
- 
Constructor Details- 
SurvivalRuleSetpublic SurvivalRuleSet(IExampleSet exampleSet, boolean isVoting, InductionParameters params, Knowledge knowledge) Invokes base class constructor and calculates survival function estimator for the training set.- Parameters:
- exampleSet- Training set.
- isVoting- Voting flag.
- params- Induction parameters.
- knowledge- User's knowledge.
 
 
- 
- 
Method Details- 
getTrainingEstimatorGetstrainingEstimator}.
- 
predictEstimates survival function for a given example and stores in a text form in ATTRIBUTE_ESTIMATOR attribute.- Specified by:
- predictin class- RuleSetBase
- Parameters:
- example- Example to be examined.
- Returns:
- Should be ignored (always 0).
 
- 
applyApplies the rule model on a given set (estimates survival functions for all examples).- Overrides:
- applyin class- PredictionModel
- Parameters:
- exampleSet- Example set to be examined.
- Returns:
- Example set with filled estimates and annotations.
- Throws:
- OperatorException
 
- 
createPredictionAttributesComputes prediction attributes (survival estimator) for a given set.- Overrides:
- createPredictionAttributesin class- PredictionModel
- Parameters:
- exampleSet- Example set to be examined.
- label- Input label attribute.
- Returns:
- Output label attribute.
 
- 
toStringGenerates text representation of the survival rule set. Beside list of rules, it contains survival function estimates of the entire training set and particular rules.- Overrides:
- toStringin class- RuleSetBase
- Returns:
- Rule set in the text form.
 
 
-