Class SurvivalRuleSet
java.lang.Object
adaa.analytics.rules.logic.representation.ruleset.PredictionModel
adaa.analytics.rules.logic.representation.ruleset.RuleSetBase
adaa.analytics.rules.logic.representation.ruleset.SurvivalRuleSet
- All Implemented Interfaces:
Serializable
Class representing a set of survival rules.
- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from class adaa.analytics.rules.logic.representation.ruleset.RuleSetBase
RuleSetBase.Significance -
Field Summary
FieldsModifier and TypeFieldDescriptionstatic final StringAnnotation representing survival function estimator of the training set (in a text form).static final StringAnnotation storing reveresed survival estimator of the training set (in a text form).static final StringName of the prediction attribute representing survival function estimator (in a text form).protected KaplanMeierEstimatorTraining set estimator.Fields inherited from class adaa.analytics.rules.logic.representation.ruleset.RuleSetBase
ANNOTATION_TEST_REPORT, attributes, growingTime, isVoting, knowledge, params, pruningTime, rules, totalTime -
Constructor Summary
ConstructorsConstructorDescriptionSurvivalRuleSet(IExampleSet exampleSet, boolean isVoting, InductionParameters params, Knowledge knowledge) Invokes base class constructor and calculates survival function estimator for the training set. -
Method Summary
Modifier and TypeMethodDescriptionapply(IExampleSet exampleSet) Applies the rule model on a given set (estimates survival functions for all examples).protected IAttributecreatePredictionAttributes(IExampleSet exampleSet, IAttribute label) Computes prediction attributes (survival estimator) for a given set.GetstrainingEstimator}.doubleEstimates survival function for a given example and stores in a text form in ATTRIBUTE_ESTIMATOR attribute.toString()Generates text representation of the survival rule set.Methods inherited from class adaa.analytics.rules.logic.representation.ruleset.RuleSetBase
addRule, calculateAvgRuleCoverage, calculateAvgRulePrecision, calculateAvgRuleQuality, calculateConditionsCount, calculateInducedCondtionsCount, calculateSignificance, calculateSignificanceFDR, calculateSignificanceFWER, getGrowingTime, getIsVoting, getParams, getPruningTime, getRules, getTotalTime, performPrediction, setGrowingTime, setIsVoting, setPruningTime, setTotalTime, toTableMethods inherited from class adaa.analytics.rules.logic.representation.ruleset.PredictionModel
checkCompatibility, getLabel, getTrainingHeader, supportsConfidences
-
Field Details
-
ATTRIBUTE_ESTIMATOR
Name of the prediction attribute representing survival function estimator (in a text form).- See Also:
-
ANNOTATION_TRAINING_ESTIMATOR
Annotation representing survival function estimator of the training set (in a text form).- See Also:
-
ANNOTATION_TRAINING_ESTIMATOR_REV
Annotation storing reveresed survival estimator of the training set (in a text form).- See Also:
-
trainingEstimator
Training set estimator.
-
-
Constructor Details
-
SurvivalRuleSet
public SurvivalRuleSet(IExampleSet exampleSet, boolean isVoting, InductionParameters params, Knowledge knowledge) Invokes base class constructor and calculates survival function estimator for the training set.- Parameters:
exampleSet- Training set.isVoting- Voting flag.params- Induction parameters.knowledge- User's knowledge.
-
-
Method Details
-
getTrainingEstimator
GetstrainingEstimator}. -
predict
Estimates survival function for a given example and stores in a text form in ATTRIBUTE_ESTIMATOR attribute.- Specified by:
predictin classRuleSetBase- Parameters:
example- Example to be examined.- Returns:
- Should be ignored (always 0).
-
apply
Applies the rule model on a given set (estimates survival functions for all examples).- Overrides:
applyin classPredictionModel- Parameters:
exampleSet- Example set to be examined.- Returns:
- Example set with filled estimates and annotations.
- Throws:
OperatorException
-
createPredictionAttributes
Computes prediction attributes (survival estimator) for a given set.- Overrides:
createPredictionAttributesin classPredictionModel- Parameters:
exampleSet- Example set to be examined.label- Input label attribute.- Returns:
- Output label attribute.
-
toString
Generates text representation of the survival rule set. Beside list of rules, it contains survival function estimates of the entire training set and particular rules.- Overrides:
toStringin classRuleSetBase- Returns:
- Rule set in the text form.
-